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1 Introduction

We plan to explore Navigation in realistic 3D environments and at large scales.
Long-range 3D navigation is a complex cognitive task that relies on developing
an internal representation of space, grounded by recognisable landmarks and
robust visual processing. Our work will focus on representing a framework for
decomposing navigation from building up internal representations of environ-
ments, planning or learning mobile operation on specialized tasks to a multi
task reinforcement learning setting where learning a composition of behavioral
subpolicies allows agent to solve tasks in these environments and generalize
high-level behavior at large scales.

We would focus on methods for learning hierarchical policy representations.
Practically it has been shown that discovery of these hierarchies requires detailed
supervision in the form of explicitly specified high-level actions, subgoals, or
behavioral primitives. This poses various questions on the nature of supervision
necessary and a better model to achieve full benefits of hierarchies.

In this study we will try to use demonstrations to supervise discoveries of
these hierarchies. Given policy demonstrations and a space of behavioral prim-
itives to the agent, we hope that it be able to infer the underlying primitives
as subpolicies in these demonstrations and use these subpolicies to generalize
navigational ability over unseen navigational tasks and environments.

2 Related Work

3D Navigation and Generalization: There has been a prominent line of
work on the task of navigation in real 3D scenes. Mirowski shows that an
agent’s navigation ability can be improved in mazes by introducing auxiliary
tasks. However, these only evaluate the agent’s generalization ability on pixel-
level variations or small mazes. A more recent body of work on long range
navigation relies on integration of general policies with locale-specific knowledge,
and propose a dual pathway architecture that allows locale-specific features to
be encapsulated, while still enabling transfer to multiple cities. Yet these works
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rely on shaped rewards to embed navigating behaviors in the agent and train
on static street view images rather than rich 3D scenes. (Gupta et al., 2017)
[4] show that an agent can learn to navigate via mapping and planning using
shortest path supervision in an end-to-end learning framework.

Instead, we will follow (Andreas et al., 2017) [2] where they explore a mul-
titask reinforcement learning setting where the learner is presented with policy
sketches (Policy sketches are short, ungrounded, symbolic representations of a
task that describe its component parts. While symbols might be shared across
tasks, the learner is told nothing about what these symbols mean, in terms of
either observations or intermediate rewards) and (Pathak et al., 2018)[1] where
an agent explores the environment without any expert supervision and distills
this exploration data into goal-directed skills. These skills are then used to
imitate the visual demonstration provided by some expert.

3 The Environment

We plan to use House 3D [5] as the virtual environment to test agents general-
izibility to unseen navigation tasks and is sourced from SUNCG dataset. It has
45,622 human-designed 3D scenes ranging from single-room studios to multi-
floor houses. On average, there are 8.9 rooms and 1.3 floors per scene. Each
scene in SUNCG is fully annotated with 3D coordinates and its room and object
types (e.g. bedroom, shoe cabinet, etc). At every time step an agent has access
to the following signals: a) the visual RGB signal of its current first person
view, b) semantic/instance segmentation masks for all the objects visible in its
current view, and c) depth information. In House3D, an agent can live in any
location within a 3D scene, as long as it does not collide with object instances
(including walls) within a small range, i.e. robot’s radius. Doors, gates and
arches are considered passage ways, meaning that an agent can walk through
those structures freely.

4 Task Formulation

Let the supervision demonstrations be available as a sequence of images D :
{x1d, x2d, ..., xNd}. Also, let each demonstration be a sequence of subpolicies
corresponding to a sequence of high-level symbolic primitives drawn from a
fixed vocabulary B. We consider a multitask reinforcement learning problem as
a partially observable markov decision process in a shared environment. This
environment is defined by a tuple (S,A, P, γ). Let S : {x1, a1, x2, a2, ..., xK}
be the sequence of observation and low-level actions generated by an agent as
it explores its environment. We won’t assume any prior on the number of low
level actions available or how to use these actions, which must be inferred by
the model. Each task τ ∈ T is specified by a reward Rτ which is a task specific
reward function and the goal observation xg to reach. Our aim is to learn
a policy π that takes as input a pair of observations (xi, xg) and outputs a
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sequence of subpolicies (πτ : π1, π2, ..., πK) to reach its goal.
We will also use the paradigm of curriculum learning. Initially the model

will be presented with task demonstrations associated with short sketches. Once
average reward on all these tasks reaches a certain threshold, the length limit
will be incremented.

5 Evaluation

The task for the model is to learn subpolicies for high level behaviors from
demonstrations and use these subpolicies to generalize its navigational ability
to large scale environments. Thus a natural question would be to ask: do
these subpolicies actually allow the agent to learn these primitive behaviors?
One evaluative criteria would be to see how well an agent can demonstrate a
particular primitve behavior such as exiting a building, or moving north as far
as possible etc. from these learned policies. It must also be able to exhibit
compositionality, where behavior from a sequence of these subpolicies must be
consistent with the expected actions that the agent takes.

For most navigational tasks, it is intuitive to think that reaching the goal is
more important that how it is reached. Thus the agent must understand that
a goal has been reached. The agent must show the ability to navigate without
being lost. We will also use the geodesic distance [3] to measure proximity.
This will also be a measure of the agent’s ability to learn about shortcuts. It
is important to think about shortcuts in embodied navigation. The agent must
learn to take shortcuts in unseen navigation tasks and this behavior must be
robust to changes in the environment.
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