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1 Motivation

The United States being highly auto-dependent, with the 307 million people owning 150 m cars,
an average American spends 17000 minutes a year behind the wheel. This implies an unnecessary
investment of a substantial amount of one’s time and effort and also comes with its own set of
issues and troubles like potential accidents, human fatigue, time wasted behind the wheel in traffic
congestion, having to drive in limited visibility etc. Self driving cars are the solution to mitigate if
not completely eliminate these problems.

To realize efficient self driving agents, the task of optimizing traffic flow will be a challenge. Control-
ling the pace car and the lane changes for each agent takes will enable us to control traffic congestion,
reducing delays and travel times. This is a complex problem due to various reasons: one is the
existence of a large state space for the agent at any given instance and another is there being no
definitive measure of optimality that it can be drive towards. This makes traditional motion planning
methods like A* and rrt very hard to implement in this setting. We thus decided to explore Machine
Learning based approaches as an alternative, specifically the family of ’Reinforcement Learning’
algorithms. The use of neural networks to estimate the state-action value function in a reinforcement
learning (RL) framework has recently been demonstrated to be a remarkably powerful way to learn
how to succeed in a very large state space with no prior knowledge.[6]

We explore reinforcement learning as a possible solution for decision making for these fully automated
driving vehicles in real urban traffic scenarios and model traffic scenarios by a simulated micro-traffic
environment. The perception, control, and planning system for one of the car is all handled by a
single neural network as part of a model-free, off-policy reinforcement learning process.

2 Problem Statement

For an intuitive understanding of this problem it is necessary to first look at our agent, the environment
it operates in and then attempt to develop a technique for meaningfully driving it while maximizing
its speed.

Let’s consider the traffic flow simulator.

It uses a discrete occupancy grid as a simplified representation of the world. Each cell contains the
speed of the car occupying it. The focus of this simulation is to learn efficient movement patterns in
heavy traffic, the problem of avoiding collisions is abstracted away by using a “safety system”. This
safety system looks at the occupancy grid and prevents actions that would lead to a crash, for example
accelerating when there already is a car in front or changing lanes with a car on the next lane.[2]

All cars have a choice of five actions, changing lanes to either side, accelerating or slowing down
and simply doing nothing/keeping the same settings as before. The other cars choose the actions at
random, e.g. changing lanes if the safety system permits. The random sampling of these actions is
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biased towards patterns that seem realistic, for example not changing the lanes too often in general,
but with a higher probability if stuck behind another car.

Further, there is one car (displayed in red) that is not using these random actions. This is the car
controlled by the deep reinforcement learning agent. It is able to choose an action every 30 frames
(the time it takes to make a lane change) and gets a cutout of the state map as an input to compute
its actions. Knowing every agents optimal speed, the best lane to drive in, or the best route to take,
traffic flow could be optimized. We cast this as a motion planning problem.

This is a python based implementation similar to the Deep-Traffic simulator MIT provides for its
Deep-Traffic competition.[5]

Markov decision processes (MDPs) are a general framework to model planning and decision making
problems. Environments which follow a structure where a given state conveys everything the agent
needs to act optimally are called ‘Markov Decision Processes (MDP). Executing an action u ∈ U ,
given the system is in state x ∈ X , is what will be called a policy π : x → u. The goal of such a
planning problem is to find an optimal policy (sequence of actions) π∗ that maximizes the expected
reward over the time horizon T. A commonly applied approach to find an optimal policy is using
value iteration.

Anyhow, true system states are typically partially observable. What this means is the information
available to our agent is spatially and often times even temporally limited. Partially observable
Markov decision processes(POMDPs) help to accommodate this limitation by introducing the idea of
a belief bel(xt) of being in a state xt at time t.

Based on these ideas, we build a deep neural agent that performs well in this setting. This paper has
shown that recurrent blocks in neural agents can handle partially observable environments[1]. We
implement and explore Action specific Recurrent Deep Q networks(ADRQN) and compare them
with Action specific Deep Q networks(ADQN) believing that information over time will enable the
agent to make good decisions.

3 Methodologies Explored

Within the context of Reinforcement learning, Deep Q networks(DQN) [4] and Deep recurrent Q
networks(DRQN) have proved to be successful larger and complex implementations of Q learning
algorithms as value iteration methods. There is established literature on this family of methods. Our
goal is to propose a model-free deep RL approach that incorporates the influence of the performed
action through time. We go beyond and look at Action specific Q networks inspired by these works.

ADQN [4] attempts to couple actions and observations as the input to the Q network. Thus the
model is able remember past actions. DQN or DRQN only consider the convolutional features of the
history of observations instead of explicitly incorporating the actions. However, the action performed
is crucial for belief estimation in POMDPs.[6] argue why the past history of actions is important
while giving a formal mathematical definition of the POMDP setting and formulations that estimate
this belief.[5] implements ADQN to the same problem we try to tackle, But a key factor in solving
such problems is the capacity of an agent to integrate temporal observations. The intuition being: if
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information at a single moment isn’t enough to make a good decision, then varying information over
time probably is. DQN (or ADQN) suggests this temporal integration by using an external frame
buffer which keeps the last few frames of the environment in memory and feeds this to the neural
network. This involves serious memory issues as the environment gets complicated and the number
of frames increase. An alternative is to move the temporal integration into the agent itself by utilizing
the RNN network, which is what ADRQN attempts at.

Graph of the ADQN as visualized by Tensorboard

By utilizing a recurrent block in our network, we can pass the agent single frames of the environment,
and the network will be able to change its output depending on the temporal pattern of observations it
receives. It does this by maintaining a hidden state that it computes at every time-step. The recurrent
block can feed the hidden state back into itself, thus acting as an augmentation which tells the
network what has come before.[6]

Input state space that DQN proposes to deal with partial observability.

A general recurrent setting framework.[3]
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The graph of the ADRQN as visualized by Tensorboard

(i) We implement ADRQN by adding an LSTM recurrent cell to the ADQN framework. The input to
the LSTM layer is the concatenation of output of the action layer and output of the observation state
layer. The output of the LSTM is then fed into the dense output layers.

(ii) We change the way the experience buffer stores memories. We make it store entire episodes,
and from these episodes we draw random batches of fixed trace length. This way we retain random
sampling and also make sure we have traces of experience that follow form one another.

But implementing and deploying RL algorithms on these problems poses other challenges as well.
Hyper parameter configurations need to be tuned for optimal model selection. [2] try to achieve
this through large scale open competitions demonstrating the need and difficulty of this task. Other
challenges involve engineering rewards and effective exploration. RL is based on a trial-and-error
process and in complex tasks, effective exploration remains a challenge. We briefly describe about
the hyper-parameters and rewards used to model our agent without tuning these or engineering
rewards specific for our task. Taking into account the limited time available for this project, we build
upon previous works and competitions on similar tasks for these values. We are more interested
in effective exploration strategies used, in context of our problem. To study the impact of action
selection strategies as effective exploration paradigms, we describe and implement them in detail and
try to get a comparative analysis.

3.1 Hyper Parameters Used

The hyper parameters for the ADRQN implementation are:

Table 1: Hyperparameters

activation function tanh
number of episodes 2000
Grid cells to the front of the car 20
Grid cells to the back of the car 5
Grid cells to the sides of the car 1
batch size 4
trace length 8
number of convolutional layers for observation state layer 2
number of LSTM units 256
Final dense layer for output = num of actions 5
temperature for boltzmann exploration 0.5
dropout probability 0.5
learning rate 0.001

3.2 Reward Modeling

The objective here is to maximize the average speed of the agent over a number of episodes while
using a stable strategy. In our framework, a stable strategy maintains that the agent not change its
lane too often as it is impractical in an urban scenario. We impose a penalty of -0.00001 in case of
lane switches. We define the maximum speed that the agent can achieve to be 110km/hr and a high
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reward of 30 on achieving this goal. The discount factor is 0.98 and the rewards associated with each
action are:

Left → 0.01, Right → 0.01, Accelerate → 0.30, Decelerate → 0.20, Maintain → 0.50

3.3 Exploration Strategies

The process of obtaining representative training data in Reinforcement Learning is called exploration.
The following techniques were used by us in the training process:

(i) A simple combination of the greedy and random approaches yields the ε-greedy exploration
strategy. Consider the case of the multi-arm bandit problem. The two goals here would be to try
a few coins and determine which yields the best results and then exploit the gained knowledge
to earn as much as possible. If a fixed set of experiments are conducted and the data of winning
from each machine is logged, the ε greedy approach involves selecting the machine with the current
average highest payout with probability (1-ε)+(ε/k), where k is the number of machines and you
select the machines that dont have the current highest payout with the probability ε/k. The ε in
ε-greedy is an adjustable parameter which determines the probability of taking a random, rather than
principled, action. Due to its ease of use,this approach has become the defacto technique for most
recent reinforcement learning algorithms, including DQN and its variants.

Our implementation - we start with a high epsilon value to encourage random exploration and then
decay it linearly over the number of iterations performed assuming agent learns what it needs to learn
about the environment as iterations increase.

ε-Greedy Method [3]

(ii) During exploration, the agent would ideally like to exploit all the information present in the
estimated Q-values produced by our Deep network. This approach is followed by Boltzmann
Exploration. The key here is choosing the action based on weighted probabilities rather than any
element of randomness.In machine learning, a Softmax layer is used, to map the non-normalized
output to a probability distribution over predicted output classes. This way, the optimal action is most
likely to be chosen though not guaranteed to be chosen. The biggest advantage over e-greedy is that
unlike epsilon-greedy where all non-optimal actions are estimated equally, in Boltzmann exploration
they are weighed by their relative value. This probability based action selection makes sure that the
agent ignores actions which it estimates to be largely sub-optimal and gives more attention to those
actions with higher probabilities, but not necessarily ideal. We implement this approach similarly to
that stated in Arthur Juliani’s Blog. [3]
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Boltzmann Exploration [3]

(iii) A Bayesian neural network(BNN) is a neural network with a prior distribution on its weights. In
a reinforcement learning setting, the distribution over weight values allows us to obtain distributions
over actions as well. The variance of the probability distribution of weight values provides us an
idea of the agent’s uncertainty about each of it’s actions. Due to the sheer volume of weights in
most practical networks, it is impractical to maintain a distribution over all weights. Instead we
can utilize dropout to simulate a probabilistic network. Dropout is a regularization technique for
reducing over-fitting in neural networks by preventing complex co-adaptations on training data [1].
By repeatedly sampling from a network with dropout, we can obtain a measure of uncertainty for
each action. When taking a single sample from a network with Dropout, we are doing something that
approximates sampling from a BNN.

Our Implementation - we add a variational dropout wrapper in the LSTM layer of our network with
the dropout probability of 0.5, as variational dropouts have shown to work well for recurrent networks.
The action selection strategy is still ε - greedy here. We also tried adding dropouts before and after
the recurrent layer but it did not seem to provide any performance boost.

Light Blue-Probability of choosing an action; Dark Blue-Action Chosen; Each change in value
corresponds to a new sampling from a BNN using dropout [3]

4 Evaluation of Methods

We trained the ADQN reference model, ADRQN with ε-greedy exploration, ADRQN with boltzmann
exploration and the two variations of dropout exploration for 2000 episodes each. We use the average
speeds over the episode of our agent as the primary performance criteria. The higher the average
speed the better the agent is able to perform. Other measures of performance are convergence rate
and stability of the agent.
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4.1 ADQN vs ADRQN

Average speeds comparision between ADQN and ADRQN networks,
ADQN-orange,ADRQN-blue

Doing a comparitive study between ADRQN and ADQN with ε-greedy exploration policies. We
can see that ADRQN clearly performs better than the ADQN with respect to model stability and
convergence of average speed to the optimal performance. The average speed at the end of 2000
episodes for the ADRQN is 98 and ADQN is 95. There is a clear improvement in the model
performance with a recurrent layer added to the ADQN network. This agrees with our hypothesis of
integrating temporal observations to predict q values and approximating the q value function as an
important criteria for boosting model performance. The model parameters haven’t been fine tuned
yet. An ideal comparison would involve finding the optimal hyperparameter configurations and then
comparing the role recurrent network plays for the given problem. Anyways, our implementations
provide with a good start towards this study and help form an intuitive bias why recurrent networks
work well in these partially observable settings.

4.2 Exploration Policy Comparisons

Average speeds comparision between different exploration policies with ADRQN,
linear epsilon - greedy-dark blue, Boltzmann - orange,

Dropout - light blue, Variational Dropout - red

Next we compare ε-greedy exploration with a linear decay, Boltzmann exploration and variations
with Dropouts as exploration policies. Looking at the average speeds at the end of 2000 episodes,
ε-greedy performs has the best average speed of 98, starts converging to the optimal value while
learning a stable model. The Boltzmann approach has a really fast convergence to the optimum, at
about 300 training episodes and is quite stable while it fares worse off in terms of the maximum
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average speed it achieves. Using variational dropouts on the recurrent layer though improves the
performance over Boltzmann approach but loses its property to converge much faster. Using dropouts
on the dense layers in the network gives the worst performance both in terms of achieving an optimal
average speed and convergence rate. For a fair comparison we assume that the hyper parameters
and the model parameters used are optimal and then see how different exploration policies lead to
differing agent behaviours under the same set of parameters for an architecture used.

Table 2: Avg speed comparisions

Network Architecture Avg speed(km/hr)
ADQN 95
ARDQN with linear epsilon greedy 98
ARDQN with Boltzmann 88
ARDQN with variational dropout 92
ARDQN with dropouts 90

5 Conclusions

We started with the aim of exploring machine learning techniques for optimizing traffic flow in
partially observable environments. We explored ADQNs and ADRQNs as possible methods of
implementing Reinforcement Learning in this setting. We were able to clearly discern, that ADRQNs
perform better in partially observable environiments than ADQNs as demonstrated by P .Zhu et al..
[6]. We were further able to test action exploration policies for the setting and observed that they
perform worse in terms of optimal speed but may lead to a faster convergence for our choice of
hyperparameters. We believe that these exploration policies are dependent on hyperparameter tuning
and that is an essential task to guarantee performance.

There is also a body of work in effective exploration strategies that deals with the nature of reward
signals or uses deep exploration in similar scenarios rather than just dealing with action selection
strategies. As a future extension we would like to look into these policies and compare their
performances in the context of our problem. We would also like to derive a mathematical basis for
these action selection strategies explaining if perform well or not in this regard.

6 Description of Individual Effort

- All three members of the group were involved in meeting up with GSIs for their guidance over the
approach. The final report was also a combined effort from all three. The individual efforts are as
detailed below:

- Vihang – Conducted survey for the environments that we can use for the project ranging
from Deep Traffic to the GitHub repository we ended up using. Chose the perfect hyperparameters to
be used resulting in avoidance of local minima. Was mainly responsible for developing the ADRQN
architecture being used in the project. Detailed out the results the code gave and why they made sense.

- Ananya – Conducted literature review for baseline paper to be implemented given the environment.
Tuned the environment to be used from the one on GitHub repository to the one customized for our
use case. This was a particularly tedious process since it involved going through around 3000 lines
of code to ensure a seamless integration from available open source code to our adaptation of the same.

- Vijay – Did the coding in TensorFlow. Given the environment developed by Ananya and
the architecture by Vihang, he developed the code for the Deep Neural networks and trained it on
GPU. His modular code helped to ensure we could, despite the limited time available, simulate
and train both networks and three different exploration strategies. Simulated results for the three
exploration strategies we ended up using.

P.S.–Our fourth team member opted out of the project work since she decided to audit the
course. Hence the absence of her mention in this report.
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