Gluttonous: A Greedy Algorithm for Steiner Forest

Vihang Agarwal, Aditya Modi, Shun Zhang

University of Michigan

April 22, 2019

4 3 b

э

The Steiner Forest Problem

• I = (M, D) is a Steiner forest instance.

- A metric space M = (V, d): V is a set of vertices; $d(\cdot, \cdot)$ is a metric.
- Terminals D ⊆ (^V₂): a collection of pairs of vertices (for example, D = {{s₁, s₁}, {s₂, s₂},...}).
- A solution F to the Steiner forest instance I is a forest: for any {s, s̄} ∈ D, there exists a tree T ∈ F such that {s, s̄} ⊆ T.

• An optimal solution minimizes $cost(F) = \sum_{T \in F} cost(T)$.

- A primal-dual method (Agrawal et al., 1995; Goemans and Williamson, 1995) provides a 2-approximation algorithm.
- Greedy algorithms.
 - A paired greedy algorithm (Chen et al., 2010) is a Ω(log n)-approximation.
 - This work (Gupta and Kumar, 2015) provides a constant-factor approximation algorithm by *ignoring the pairing relation*.

- 1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
- 2: while there exist active supernodes in $C^{(i)}$ do
- 3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$ -punctured distance.
- $4: \qquad C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}.$
- 5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
- 6: $i \leftarrow i+1$
- 7: end while
- 8: return a maximal acyclic subgraph of E'

- 1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
- 2: while there exist active supernodes in $C^{(i)}$ do
- 3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$ -punctured distance.
- $4: \qquad C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}.$
- 5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
- 6: $i \leftarrow i+1$
- 7: end while
- 8: return a maximal acyclic subgraph of E'

- 1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
- 2: while there exist active supernodes in $C^{(i)}$ do
- 3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$ -punctured distance.
- $4: \qquad C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}.$
- 5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
- 6: $i \leftarrow i+1$
- 7: end while
- 8: return a maximal acyclic subgraph of E'

- 1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
- 2: while there exist active supernodes in $C^{(i)}$ do
- 3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$ -punctured distance.
- $4: \qquad C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}.$
- 5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
- 6: $i \leftarrow i+1$
- 7: end while
- 8: return a maximal acyclic subgraph of E'

- 1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
- 2: while there exist active supernodes in $C^{(i)}$ do
- 3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$ -punctured distance.
- $4: \qquad C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}.$
- 5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
- 6: $i \leftarrow i+1$
- 7: end while
- 8: return a maximal acyclic subgraph of E'

Analysis of Gluttonous

The main result:

Theorem

The gluttonous algorithm is a constant-factor approximation for Steiner Forest.

For analysis, we first define *faithfulness*.

Definition

A forest F is **faithful** to a clustering C if each supernode $S \in C$ (all vertices in S) is (are) contained within a single tree in F.

프 () () () (

Analysis of Gluttonous

The analysis proves the bound in the following two steps:

- There exists a solution F that is faithful to C^g and cost(F) ≤ 2cost(F^{*}).
- For any solution F that is faithful to C^g , $cost(F^g) \le O(1) \cdot cost(F)$.

э

Bounding the cost of F

- Optimal forest solution is F^* .
- Gluttonous returns a forest F^g with a clustering structure.
- Idea: Build the forest F by modifying F^* with two properties.
 - F is faithful to the clustering of Gluttonous F^{g} .
 - 2 $\operatorname{cost}(F) \leq 2\operatorname{cost}(F^*)$.

- ∢ ≣ ▶

Bounding the cost of F

Fact: F^* is optimal but most likely not faithful. **Question:** How to ensure faithfulness? **Idea:** Inductively build F using F^* which is faithful to *Gluttonous*.

Assume current F is faithful to current clustering. If we connect two unmatched nodes u and v in S and S':

- Both are in same tree in F. Unchanged F is still faithful!
- **2** Both lie in different T_1 and T_2 . Bound cost of used path P as:

 $\operatorname{cost}(P) \leq \min(d_{\mathcal{T}_1}(u, \bar{u}), d_{\mathcal{T}_2}(v, \bar{v})) \leq \min(\operatorname{width}(\mathcal{T}_1), \operatorname{width}(\mathcal{T}_2))$

Next: cost(F) = sum of all path costs <math>cost(P).

Theorem (Low-cost and Faithful F)

Sum of all path costs and, therefore, F is $cost(F^*) + \sum_{T' \in F^*} width(T') \le 2cost(F^*).$

= na0

Charging the cost of Gluttonous

Result: There exists forest F faithful to C^g with $cost(F) \le 2cost(F^*)$. **Question:** How to relate the cost of F to $cost(F^g)$? **Approach:** For faithful \overline{F} , charge total $cost(F^g)$ as $\mathcal{O}(1) \cdot cost(\overline{F})$.

Consider any feasible solution \overline{F} . Now,

- For any iteration t, build a Steiner forest instance \mathcal{I}_t on supernodes.
- We also maintain a forest F_t such that:

• F_t is feasible to the instance I_t .

- **2** F_t maintains the connectivity of \overline{F} :
 - u, v in same tree in $\overline{F} \Rightarrow S_u, S_v$ in same tree in F_t

Approach:

- Start with individual nodes as clustering.
- Set the initial forest solution to \bar{F}
- At any step, when merging two supernodes: merge nodes in *F_t* (*delete* edges to remove cycle)
- To maintain cost, short cut low degree Steiner vertices (inactive supernodes).

Theorem

Given any forest \overline{F} , we can charge the cost of gluttonous to at most the cost of $48 \cdot cost(\overline{F})$.

• Cost of *bought* paths can be charged to the deleted edges.

Theorem (Approximation factor of Gluttonous)

Combining the two results, we can show that the approximation factor of Gluttonous is 96 (constant approximation).

- Choose the faithful clustering from first part as \overline{F} .
- $\operatorname{cost}(\bar{F}) \leq 2 \cdot \operatorname{cost}(F^*).$
- $\operatorname{cost}(F^g) \leq 48 \cdot \operatorname{cost}(\bar{F}).$
- Note that the intermediate forest \overline{F} is only considered in analysis.

くぼう くまう くまう

Cost Sharing Mechanisms

Intuition: Informally, a cost-sharing mechanism builds a network connecting agents to their desired source, and allocates the cost incurred among the agents, s.t.

• No group of agents is charged too much precluding the possibility of their being unhappy and trying to leave the system.

Cost Shares for Steiner Forest

- **Definition:** Cost sharing method χ for the Steiner Forest game. (*I* is the Steiner Forest instance).
 - Seen as a charging function which divides the cost of connecting terminal pairs in *I* amongst the agents that wish to establish this connection.

Constraints,

- Sum of such cost shares should at least be equal to the total cost of the connections. i.e., Σ_{(u,ū)∈D} χ(I, (u, ū)) ≤ α · cost(F*). (α-approximate budget-balanced).
- Cost share of any fixed individual agent should never decrease as other agents leave this system.(cross-monotonic)

- χ is defined using the timed version of gluttonous algorithm. This is $\gamma\text{-approximation algorithm.}$
 - The timed version divides execution into stages *i* where all supernodes with merging distance in $[2^i, 2^{i+1}]$ are merged instead of the nearest active supernode pair.

• Getting cost shares:

• At each stage increment the cost-share of (u, \bar{u}) and (u', \bar{u}') by $\frac{2^{t+1}}{2\gamma}$ (*u* and *u'* are active terminals with maximum distance to their mates for a pair of supernodes respectively).

- This cost sharing method and its strictness property ensures for an algorithm A, if we partition D arbitrarily into $D_1 \cup D_2$, and build a solution $A(D_1)$, then the cost-shares of the terminals in D_2 would suffice to augment the solution $A(D_1)$ to one for D_2 as well.
- Showing strict cost shares for Steiner forest had remained an open problem, and this paper provides a constant factor approximation strict cost share scheme using the structure and analysis for the gluttonous algorithm.

-

Future Direction

• Better approximation factor:

- 96 and 69 constant factor obtained for greedy and local search algorithms respectively. Best approximation factor available is 2 1/k.
- Thus, the problem of refining the bound and simplifying the analysis is wide open.

• Dynamic Steiner forest

- Here, terminal pairs arrive online and we want to maintain a constant-approximate Steiner Forest while changing the solution by only a few edges in each update.
- Dynamic Steiner tree algorithms have been based on local search. Thus obtaining such a solution for this generalized version through local search approximation algorithms is another possibility.

• Stochastic multi-stage Steiner forest

- In the stochastic version we are given a distribution over demands and demand set is revealed in the future.
- The idea is to use cost-sharing schemes to minimize the total expected cost. It would be interesting to show better approximation for these problems. (primal-dual methods give an approximation factor of 5).

- Agrawal, A., Klein, P., and Ravi, R. (1995). When trees collide: An approximation algorithm for the generalized steiner problem on networks. *SIAM Journal on Computing*, 24(3):440–456.
- Chen, H.-L., Roughgarden, T., and Valiant, G. (2010). Designing network protocols for good equilibria. *SIAM Journal on Computing*, 39(5):1799–1832.
- Goemans, M. X. and Williamson, D. P. (1995). A general approximation technique for constrained forest problems. SIAM Journal on Computing, 24(2):296–317.
- Gupta, A. and Kumar, A. (2015). Greedy algorithms for steiner forest. In *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*, pages 871–878. ACM.

伺い イラト イラト