Gluttonous: A Greedy Algorithm for Steiner Forest

Vihang Agarwal, Aditya Modi, Shun Zhang

University of Michigan

April 22, 2019
The Steiner Forest Problem

- $I = (M, D)$ is a Steiner forest instance.
 - A metric space $M = (V, d)$: V is a set of vertices; $d(\cdot, \cdot)$ is a metric.
 - Terminals $D \subseteq \binom{V}{2}$: a collection of pairs of vertices
 (for example, $D = \{\{s_1, \bar{s}_1\}, \{s_2, \bar{s}_2\}, \ldots\}$).

- A solution F to the Steiner forest instance I is a forest:
 for any $\{s, \bar{s}\} \in D$, there exists a tree $T \in F$ such that $\{s, \bar{s}\} \subseteq T$.

- An optimal solution minimizes $\text{cost}(F) = \sum_{T \in F} \text{cost}(T)$.
A primal-dual method (Agrawal et al., 1995; Goemans and Williamson, 1995) provides a 2-approximation algorithm.

2 Greedy algorithms.

1 A paired greedy algorithm (Chen et al., 2010) is a $\Omega(\log n)$-approximation.

2 This work (Gupta and Kumar, 2015) provides a constant-factor approximation algorithm by ignoring the pairing relation.
The Gluttonous Algorithm

1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$

2: while there exist active supernodes in $C^{(i)}$ do

3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$-punctured distance.

4: $C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}$.

5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path

6: $i \leftarrow i + 1$

7: end while

8: return a maximal acyclic subgraph of E'

Vihang Agarwal, Aditya Modi, Shun Zhang

Gluttonous: A Greedy Algorithm for Steiner Forest
The Gluttonous Algorithm

1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
2: **while** there exist active supernodes in $C^{(i)}$ do
3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$-punctured distance.
4: $C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}$.
5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
6: $i \leftarrow i + 1$
7: **end while**
8: return a maximal acyclic subgraph of E'
The Gluttonous Algorithm

1. initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
2. while there exist active supernodes in $C^{(i)}$ do
3. find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$-punctured distance.
4. $C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}$.
5. find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
6. $i \leftarrow i + 1$
7. end while
8. return a maximal acyclic subgraph of E'
The Gluttonous Algorithm

1: initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$
2: while there exist active supernodes in $C^{(i)}$ do
3: find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$-punctured distance.
4: $C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}$.
5: find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path
6: $i \leftarrow i + 1$
7: end while
8: return a maximal acyclic subgraph of E'
The Gluttonous Algorithm

1. initialize $C^{(0)}$ to be the trivial clustering; the set of added edges $E' \leftarrow \emptyset$; iteration index $i \leftarrow 0$

2. while there exist active supernodes in $C^{(i)}$ do

3. find active supernodes $S_1, S_2 \in C^{(i)}$ with the minimum $C^{(i)}$-punctured distance.

4. $C^{(i+1)} \leftarrow C^{(i)} \setminus \{S_1, S_2\} \cup \{S_1 \cup S_2\}$.

5. find the shortest path from any $u \in S_1$ and $v \in S_2$ under metric $M \setminus C^{(i)}$; add to E' the edges on this path.

6. $i \leftarrow i + 1$

7. end while

8. return a maximal acyclic subgraph of E'

Vihang Agarwal, Aditya Modi, Shun Zhang
Gluttonous: A Greedy Algorithm for Steiner Forest
Analysis of Gluttonous

The main result:

Theorem

The gluttonous algorithm is a constant-factor approximation for Steiner Forest.

For analysis, we first define *faithfulness*.

Definition

A forest F is **faithful** to a clustering C if each supernode $S \in C$ (all vertices in S) is (are) contained within a single tree in F.
Analysis of Gluttonous

The analysis proves the bound in the following two steps:

- There exists a solution F that is faithful to C^g and $\text{cost}(F) \leq 2\text{cost}(F^*)$.
- For any solution F that is faithful to C^g, $\text{cost}(F^g) \leq O(1) \cdot \text{cost}(F)$.
Bounding the cost of F

- Optimal forest solution is F^*.
- Gluttonous returns a forest F^g with a clustering structure.
- **Idea:** Build the forest F by modifying F^* with two properties.
 1. F is faithful to the clustering of Gluttonous F^g.
 2. $\text{cost}(F) \leq 2\text{cost}(F^*)$.

![Diagram of forest and clustering structure](image-url)
Bounding the cost of \(F \)

Fact: \(F^* \) is optimal but most likely not faithful.

Question: How to ensure faithfulness?

Idea: Inductively build \(F \) using \(F^* \) which is faithful to *Gluttonous*.

Assume current \(F \) is faithful to current clustering.

If we connect two unmatched nodes \(u \) and \(v \) in \(S \) and \(S' \):

1. Both are in same tree in \(F \). Unchanged \(F \) is still faithful!
2. Both lie in different \(T_1 \) and \(T_2 \). Bound cost of used path \(P \) as:

\[
\text{cost}(P) \leq \min(d_{T_1}(u, \bar{u}), d_{T_2}(v, \bar{v})) \leq \min(\text{width}(T_1), \text{width}(T_2))
\]

Next: \(\text{cost}(F) = \text{sum of all path costs } \text{cost}(P) \).

Theorem (Low-cost and Faithful \(F \))

Sum of all path costs and, therefore, \(F \) is \(\text{cost}(F^*) + \sum_{T' \in F^*} \text{width}(T') \leq 2 \text{cost}(F^*) \).
Charging the cost of Gluttonous

Result: There exists forest F faithful to C^g with $\text{cost}(F) \leq 2\text{cost}(F^*)$.

Question: How to relate the cost of F to $\text{cost}(F^g)$?

Approach: For faithful \bar{F}, charge total $\text{cost}(F^g)$ as $O(1) \cdot \text{cost}(\bar{F})$.

Consider any feasible solution \bar{F}. Now,

- For any iteration t, build a Steiner forest instance I_t on supernodes.
- We also maintain a forest F_t such that:
 1. F_t is feasible to the instance I_t.
 2. F_t maintains the connectivity of \bar{F}:
 u, v in same tree in $\bar{F} \Rightarrow S_u, S_v$ in same tree in F_t

Approach:

- Start with individual nodes as clustering.
- Set the initial forest solution to \bar{F}.
- At any step, when merging two supernodes: merge nodes in F_t (delete edges to remove cycle).
- To maintain cost, short cut low degree Steiner vertices (inactive supernodes).
Theorem

Given any forest \bar{F}, we can charge the cost of gluttonous to at most the cost of $48 \cdot \text{cost}(\bar{F})$.

- Cost of *bought* paths can be charged to the deleted edges.

Theorem (Approximation factor of Gluttonous)

Combining the two results, we can show that the approximation factor of Gluttonous is 96 (constant approximation).

- Choose the faithful clustering from first part as \bar{F}.
- $\text{cost}(\bar{F}) \leq 2 \cdot \text{cost}(F^*)$.
- $\text{cost}(F^g) \leq 48 \cdot \text{cost}(\bar{F})$.
- **Note** that the intermediate forest \bar{F} is only considered in analysis.
Cost Sharing Mechanisms

Intuition: Informally, a cost-sharing mechanism builds a network connecting agents to their desired source, and allocates the cost incurred among the agents, s.t.

- No group of agents is charged too much precluding the possibility of their being unhappy and trying to leave the system.
Definition: Cost sharing method χ for the Steiner Forest game. (I is the Steiner Forest instance).

- Seen as a charging function which divides the cost of connecting terminal pairs in I amongst the agents that wish to establish this connection.

Constraints,

- Sum of such cost shares should at least be equal to the total cost of the connections. i.e., $\sum_{(u, \bar{u}) \in D} \chi(I, (u, \bar{u})) \leq \alpha \cdot cost(F^*)$. ($\alpha$-approximate budget-balanced).
- Cost share of any fixed individual agent should never decrease as other agents leave this system. (cross-monotonic)
Strict Cost Shares

- χ is defined using the timed version of gluttonous algorithm. This is γ-approximation algorithm.
 - The timed version divides execution into stages i where all supernodes with merging distance in $[2^i, 2^{i+1}]$ are merged instead of the nearest active supernode pair.

- **Getting cost shares:**
 - At each stage increment the cost-share of (u, \bar{u}) and (u', \bar{u}') by $\frac{2^{i+1}}{2\gamma}$ (u and u' are active terminals with maximum distance to their mates for a pair of supernodes respectively).
This cost sharing method and its strictness property ensures for an algorithm A, if we partition D arbitrarily into $D_1 \cup D_2$, and build a solution $A(D_1)$, then the cost-shares of the terminals in D_2 would suffice to augment the solution $A(D_1)$ to one for D_2 as well.

Showing strict cost shares for Steiner forest had remained an open problem, and this paper provides a constant factor approximation strict cost share scheme using the structure and analysis for the gluttonous algorithm.
Future Direction

- **Better approximation factor:**
 - 96 and 69 constant factor obtained for greedy and local search algorithms respectively. Best approximation factor available is $2 - \frac{1}{k}$.
 - Thus, the problem of refining the bound and simplifying the analysis is wide open.

- **Dynamic Steiner forest**
 - Here, terminal pairs arrive online and we want to maintain a constant-approximate Steiner Forest while changing the solution by only a few edges in each update.
 - Dynamic Steiner tree algorithms have been based on local search. Thus obtaining such a solution for this generalized version through local search approximation algorithms is another possibility.

- **Stochastic multi-stage Steiner forest**
 - In the stochastic version we are given a distribution over demands and demand set is revealed in the future.
 - The idea is to use cost-sharing schemes to minimize the total expected cost. It would be interesting to show better approximation for these problems. (primal-dual methods give an approximation factor of 5).

